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Abstract – The ABC flow was originally introduced by Arnol’d to investigate Lagrangian chaos.
It soon became the prototype example to illustrate magnetic field amplification via fast dynamo
action, i.e. dynamo action exhibiting magnetic field amplification on a typical timescale inde-
pendent of the electrical resistivity of the medium. Even though this flow is the most classical
example for this important class of dynamos (with application to large scale astrophysical objects),
it was recently pointed out [BD13] that the fast dynamo nature of this flow was unclear, as the
growth rate still depended on the magnetic Reynold number at the largest values available so far
(Rm = 25000). Using state of the art high performance computing, we present high resolution
simulations (up to 40963) and extend the value of Rm up to 5 · 105. Interestingly, even at these
huge values, the growth rate of the leading eigenmode still depends on the controlling parame-
ter and an asymptotic regime is not reached yet. We show that the maximum growth rate is a
decreasing function of Rm for the largest values of Rm we could achieve (as anticipated in the
above-mentioned paper). Slowly damped oscillations might indicate either a new mode crossing
or that the system is approaching the limit of an essential spectrum.

Introduction. – Fifty years after the ABC flow has
been introduced in the seminal work of Arnol’d [Arn65],
as a prototype for Lagrangian chaos, its properties as a
fast dynamo are still unclear. In a recent study [BD13], we
stressed that contrary to earlier expectations, this flow still
does not act as a fast dynamo for Rm ≃ 25000. The same
year [JG14], introduced a detailed study of the symmetries
of the various dynamo branches up to Rm = 104. Here, we
investigate the kinematic dynamo action associated with
the ABC-flow up to Rm = 5 · 105. Such extreme values
require very high spectral resolutions (up to 40963 modes)
and state of the art parallel computing.

Governing equations. – The time evolution of the
magnetic field in a conducting medium (such as an ionized
astrophysical plasma) is governed by the magnetohydro-
dynamics equations. If one assumes that the magnetic
field is weak enough not to influence the fluid flow, a sin-
gle equation, known as the induction equation, governs

the time evolution of the solenoidal magnetic field under
a prescribed flow

∂B

∂t
= ∇×

(
u×B− Rm−1 ∇×B

)
. (1)

Finding exponentially growing solutions to this equation
is known as the kinematic dynamo problem. We consider
here the ABC-flow ( [Arn65,Hén66]), which takes the form

u =(A sin z + C cos y) ex (2)
+(B sinx+A cos z) ey

+(C sin y +B cosx) ez .

We want to assess its fast dynamo property, i.e. the inde-
pendence of the growthrate on Rm in the limit Rm → ∞.
We restrict our attention to configurations in which the
magnetic field has the same periodicity as the flow (i.e.
2π-periodic in all directions of space, see [ADN03] for ex-
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Fig. 1: Plot of the magnetic field growth rate as a function of Rm, up to Rm = 5 · 105. The inset presents a closer
view on the range 2 · 105 – 2 · 106, which stresses the decrease of the growth rate at our larger values of Rm. The
horizontal dotted line at σ ≃ 0.09 corresponds to the theoretical upper bound provided by the topological entropy
(hline).

tensions) and the weights of the three symmetric Beltrami
components are of equal strength (A = B = C ≡ 1).

The simulations presented in this paper were performed
using a modified version of a code originally developed by
[GF84]. It uses a fully spectral method with explicit mode
coupling, which we parallelized using domain decomposi-
tion in the spectral space (see [BD13]).

Numerical simulations up to Rm = 5 · 105. – In
order to try to approach an asymptotic behaviour, we ex-
tend our previous study of the variation of the fastest
growth rate as a function of the magnetic Reynolds num-
ber [BD13] up to Rm = 5 · 105. Each simulation involves
N3 Fourier modes. Simulations up to Rm = 6 · 104 were
performed with resolutions N = 512 and N = 1024 in or-
der to check convergence. Simulations up to Rm = 3 · 105
were performed with resolutions N = 1024 and N = 2048
and the highest Rm we were able to perform, Rm = 5 ·105
was validated using N = 2048 and N = 4096. All simula-
tions were initialized with a random divergence free initial
seed field, with the exception our our largest and most ex-
pensive simulation, Rm = 5 · 105, which was started using
the final stage of Rm = 3 · 105. The resulting plot of the

fastest growth rate is displayed in Figure 1.
Our former study, up to Rm = 25000 revealed a growth

rate σ ≃ 0.1 for the magnetic energy. This value is in
excess of the theoretical upper bound provided by the so-
called topological entropy (hline ≃ 0.09) [KY95, CG95].
We therefore anticipated the necessity of a decrease of the
growth rate at larger (not yet available) values of Rm.

Enlarging the graph of the evolution of the growth rate
for large Rm (see the inset in Figure 1) clearly highlights
that the maximum growth rate, indeed reaches a local
maximum around Rm ≃ 2 · 105, and then decreases with
Rm above this value. The imprecision on the growth rate
is associated with slowly damped oscillations, which are
present at large magnetic Reynold number (see below).

It is striking to note that even for Rm = 5 · 105, the
growth rate has not settled to an asymptotic value. Not
only does it still vary with the controlling parameter Rm,
but it is also still significantly larger (σ ≃ 0.11) than the
theoretical upper-bound (hline ≃ 0.09).

Cross sections of the (x− y) plane with rescaled
coordinates. – In the asymptotic limit of large Rm,
it is expected that the magnetic structures will scale as
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Fig. 2: Cross sections of the magnetic field amplitude at
z = 0 in the rescaled boundary layer coordinates ζx, ζy for
Rm = 4 · 104, 2 · 105, 5 · 105.

Rm−1/2 [MP85]. In order to validate this dependency in
our direct numerical simulations, but also to test any ad-
ditional variation of the leading eigenmode with Rm, we
produce cross sections through the solution at z = 0 for
varying values of Rm. The loci of large magnetic field, cor-
responding to the traces of the “cigare” shaped structures
on this plane, are then peaks of magnetic energy. One
of these is centred on (x = 0, y = 0) , the section of this
structure in the plane is expected to have a characteris-
tic length-scale which behaves as Rm−1/2. The magnetic
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Fig. 3: Damped oscillations in the time evolution of the
magnetic energy corrected for the averaged exponential
growth rate at Rm = 2 · 105.

Reynolds numbers considered here are extremely large,
and the structure is thus sharply localised. In order to
compare the structures obtained at various values of Rm,
we therefore introduce rescaled coordinates relevant to the
asymptotic limit of large Rm

ζx = xRm1/2 , ζy = yRm1/2 . (3)

The magnetic field amplitude is represented versus (ζx, ζy)
for increasing values of the magnetic Reynolds number in
figure 2. This figure provides instantaneous cross-sections
through the cigares, using rescaled coordinates. The lead-
ing eigenmode represented in these rescaled coordinates
does not exhibit any significant variation when Rm is var-
ied from 4 · 104 to 5 · 105. This suggests that the sys-
tem might be approaching an asymptotic behaviour. We
can however not rule out, on the basis of these numerical
simulations, a remaining slow dependency of the leading
eigenmode structure on Rm (other than the length-scale
shortening accounted for via the rescaled coordinates).

Damped oscillations. – A noticeable new feature
emerges from the large Rm simulations. Whereas the lead-
ing eigenvalue was reported to be purely real for Rm > 215
(a critical value denoted Rm2 in [BD13]), damped oscilla-
tions appear for Rm > 105 (see figure 3). The presence of
oscillations suggests the existence of a complex eigenvalue.
Yet the fact that these oscillations are damped indicates
that the leading eigenvalue is still real.

The decomposition in symmetry classes introduced by
[JG14] highlighted the families corresponding to the first
and the second dynamo window of the ABC flow, re-
spectively denoted II and V. Figure 4 suggests that the
submode corresponding to this complex, non-dominant,
eigenvalue, could belong to the symmetry class II.

This may be an indication of a new eigenvalue crossing,
which could occur at larger Rm and which would result in
the reappearance of time oscillations. Indeed, some mod-
els of dynamo action in steady flow suggest the possibility
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Fig. 4: Real (left) and imaginary (right) part of the leading eigenvalue associated to the V symmetry family (black)
and the II symmetry family (red), in the classification introduced by [JG14]. Continuous lines correspond to the
results published in [JG14]. Crosses present our numerical results in [BD13] and in the present study. Circles denote
the transient behaviour.

of repeated mode crossings as Rm → ∞, while the ac-
tual growth rate itself saturates [FO88]. An alternative
scenario, could be that as one is approaching an essential
spectrum in the limit Rm → ∞, i.e. the complementary
to the discrete spectrum (isolated eigenvalues with finite
multiplicity) see [EE86,Kat95]. The growth rate (real part
of the eigenvalue) of all the eigenmodes then tends to the
same value. This somewhat more optimistic interpreta-
tion might suggest that the asymptotic behaviour of the
1 : 1 : 1 ABC dynamo, while not yet obtained numerically
could be tackled in a near future.

Discussion. – The values of Rm achieved in this
study (up to 5 · 105) are the largest numerically investi-
gated so far. They require a very significant numerical res-
olution (up to 40963 Fourier modes) and were performed
using state of the art computational resources.

We have first shown that the branch identified in the so
called “second window” of the ABC-dynamo (see [GF84])
remains the leading eigenmode up to Rm = 5 · 105. This
branch corresponds to the V symmetry class introduced
by [JG14], and is associated to a purely real leading eigen-
value in this parameter range (i.e. Rm ∈ [215, 5·105]). We
show that the growth rate is a decreasing function of Rm
for the largest values we could tackle. Furthermore, we
demonstrate that the leading eigenmode follows the an-
ticipated spatial scaling as Rm−1/2. Finally, we indentify
slowly damped oscillations occuring at large values of Rm.

Several aspects of our simulations indicate that the
ABC-dynamo is approaching an asymptotic behaviour for
Rm ≃ 105. Namely, the fact that the cross section through
the eigenmode does not reveal any change in its structure
in the rescaled coordinates. This is also supported by the
fact that the growthrate is only slightly above the theo-
retical upper bound and is now decreasing with Rm. The
occurance of damped oscillations points to an approach-
ing eigenvalue. This could be relevant to the asymptotic

behaviour, for which an essential spectrum is expected.
However the asymptotic behaviour is not yet established

and several issues indicate that one must be cautious in in-
terpreting the numerical results. The occurence of slowly
damped oscillations, could also be interpreted as a possi-
ble hint for an approaching eigenvalue crossing (as the one
observed near Rm ≃ 24). This would result in a change
of leading eigenmode. Besides, such high values may still
be considered small in some asymptotic problems. Such is
the case, for example in [Sow87], which reveals a decrease
of the growth rate as log(log(Rm))/ log(Rm). If this was
the case for the 1 : 1 : 1 ABC dynamo, its asymptotic
behaviour could remain out of reach of direct numerical
simulations for still a long period of time.

Despite its simple analytical form, the ABC-flow dy-
namo remains remarkably challenging from a computa-
tional point of view. The simulations presented here are
extreme in terms of parameter value (fast dynamo limit),
in terms of numerical resolutions (up to 40963) and in
terms of computational resources (more than 106 CPU
hours for the five new values of Rm calculated in this
study).

The two main scenario that emerge from our study, are
either the possibility of an approaching new mode cross-
ing which implies that the asymptotic behaviour is not
yet met, or that the real parts of all eigenvalues are ap-
proaching the same limit, which would instead indicate
an essential spectrum. Simulations at larger values of Rm
may shed some light on those issues.
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