PARTIEL

Samedi 17 Mars (durée 3h)

Exercice 1.

Pour chaque $x \in \mathbb{R}$, on pose $F(x) = \int_0^1 \ln(1 + e^{(x+t)}) dt$.

- 1. Montrer que la fonction $F: \mathbb{R} \to \mathbb{R}, x \mapsto F(x)$ est définie et de classe C^1 sur \mathbb{R} .
- 2. Montrer que $\forall x \in \mathbb{R}, F'(x) = \ln(\frac{1+e^{x+1}}{1+e^x})$.
- 3. Montrer que F est strictement positive et strictement croissante sur \mathbb{R} .
- 4. Montrer que $\lim_{x\to +\infty} F(x) = +\infty$ et $\lim_{x\to -\infty} F(x) = 0$.
- 5. Montrer qu'en fait $F(x)\sim x$, lorsque $x\to +\infty$. (On pourra montrer que $\forall x\geq 0$, $x+\ln 2+\frac{1}{2}\geq F(x)\geq x+\frac{1}{2}$).

Exercice 2.

- 1. Montrer que, pour tout x > 0, les intégrales impropres $\int_0^{+\infty} \frac{dt}{(x+t)^2}$ et $\int_0^{+\infty} \frac{dt}{(x+t)^3}$ convergent.
- 2. Montrer que, pour tout x>0, l'intégrale impropre $\int_0^{+\infty} \frac{\sin t}{(x+t)^2} dt$ converge. On pose $F(x)=\int_0^{+\infty} \frac{\sin t}{(x+t)^2} dt$.
- 3. Montrer que la fonction $F: x \mapsto F(x)$ est de classe C^1 sur $]1, +\infty[$ et que $\forall x \in]1, +\infty[$, $F'(x) = -2 \int_0^{+\infty} \frac{\sin t}{(x+t)^3} \mathrm{d}t.$
- 4. Grâce à une intégration par parties, montrer que $\forall x \in]1, +\infty[, F'(x) = -\int_0^{+\infty} \frac{\cos t}{(x+t)^2} dt.$
- 5. Montrer que F' est de classe C^1 sur $]1, +\infty[$ et que $\forall x \in]1, +\infty[, F''(x) = 2\int_0^{+\infty} \frac{\cos t}{(x+t)^3} dt.$
- 6. Grâce à une intégration par parties portant sur l'expression intégrale de F''(x), montrer que F est solution de l'équation différentielle suivante sur $]1, +\infty[$:

$$y'' + y' - \frac{1}{x^2} = 0.$$

7. Montrer qu'en fait F est définie et de classe C^2 sur $]0, +\infty[$. (On pourra montrer que F est de classe C^2 sur tous les intervalles $]a, +\infty[$ où a > 0).

Exercice 3.

1. Soit la partie P de \mathbb{R}^2 définie par $P=P_1\cap P_2$, où

$$P_1 = \{(x,y) \in \mathbb{R}^2/x^2 - 2y \ge 0\}$$
 , $P_2 = \{(x,y) \in \mathbb{R}^2/y - 2x^2 + 4x \ge 0\}$.

- (a) Dessiner P.
- (b) Calculer l'aire de P.
- 2. Soit T l'intérieur du triangle ABC où $\,A=(-1,-1),B=(0,2),C=(2,-1).$
 - (a) Montrer que la fonction $(x,y) \mapsto \frac{1}{(3x+y+6)^2}$ est bien définie sur la partie T de \mathbb{R}^2 .
 - (b) Calculer l'intégrale double suivante:

$$I = \iint_T \frac{\mathrm{d}x\mathrm{d}y}{(3x+y+6)^2}.$$