Correction du partiel

Exercice 1:

1. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $f(x,t) = \ln(1 + e^{x+t})$. f est continue comme somme et composée de fonctions continues (la fonction $f_1: \mathbb{R}^2 \to \mathbb{R}$, $(x,t) \mapsto e^{x+t}$ est déjà un composé de l'exponentielle avec la fonction polynomiale $(x,t) \to x+t$. La fonction $f_2: \mathbb{R}^2 \to \mathbb{R}$, $(x,t) \mapsto 1 + e^{x+t}$ est la somme de la fonction constante 1 sur \mathbb{R} et de la fonction f_1 , et f la composée de la fonction $h: [0, +\infty[\to \mathbb{R}]$ avec la fonction f_2 , en remarquant que $f_2(\mathbb{R}) \subset]0, +\infty[$). De plus, pour tout $t \in \mathbb{R}$, la fonction $\mathbb{R} \to \mathbb{R}$, $x \mapsto f(x,t)$ est dérivable comme somme et composée de fonctions dérivables et on a :

$$\forall (x,t) \in \mathbb{R}^2, \frac{\partial f}{\partial x}(x,t) = \frac{e^{x+t}}{1+e^{x+t}}$$

Enfin, la fonction $\frac{\partial f}{\partial x} \colon \mathbb{R}^2 \to \mathbb{R}$ est continue comme composée et quotient de fonctions continues. Par restriction à $\mathbb{R} \times [0,1]$, f et $\frac{\partial f}{\partial x}$ sont également continues. On en déduit que la fonction $f \colon \mathbb{R} \to \mathbb{R}$, $x \mapsto \int_0^1 f(x,t) \, \mathrm{d}t$ est de classe \mathcal{C}^1 sur \mathbb{R} et que

$$\forall x \in \mathbb{R}, F'(x) = \int_0^1 \frac{\partial f}{\partial x}(x, t) dt,$$

grâce au théorème de dérivation sous le signe \int .

2. En fait, pour tout $x \in \mathbb{R}$, la fonction $\mathbb{R} \to \mathbb{R}$, $t \mapsto f(x,t)$ est aussi dérivable comme somme et composée de fonctions dérivables, et on a :

$$\frac{\partial f}{\partial t}(x,t) = \frac{e^{x+t}}{1+e^{x+t}} = \frac{\partial f}{\partial x}(x,t).$$

Alors

$$\forall x \in \mathbb{R}, F'(x) = \int_0^1 \frac{\partial f}{\partial x}(x, t) \, dt = \int_0^1 \frac{\partial f}{\partial t}(x, t) \, dt = [f(x, t)]_{t=0}^1 = f(x, 1) - f(x, 0)$$
$$= \ln(1 + e^{x+1}) - \ln(1 + e^x) = \ln\left(\frac{1 + e^{x+1}}{1 + e^x}\right)$$

3. Pour tout $(x,t) \in \mathbb{R}^2$, on a les implications :

$$e^{x+t} > 0 \implies 1 + e^{x+t} > 1 \implies \ln(1 + e^{x+t}) > \ln(1) = 0 \implies F(x) = \int_0^1 \ln(1 + e^{x+t}) \, dt > 0$$

(En effet, si F(x)=0, comme la fonction $t\mapsto f(x,t)$ est continue et positive, on a $\forall t\in [0,1], \ln(1+e^{x+t})=0$, ce qui contredit l'inégalité ci-dessus). De plus, comme pour tout $x\in\mathbb{R}, \frac{1+e^{x+1}}{1+e^x}>1$ (car $e^{x+1}>e^x$), on a

$$F'(x) = \ln\left(\frac{1 + e^{x+1}}{1 + e^x}\right) > \ln 1 = 0.$$

F est donc strictement croissante sur \mathbb{R} .

4. • On a:

$$\forall (x,t) \in \mathbb{R}^2, 1 + e^{x+t} \geqslant e^{x+t}$$

et donc $f(x,t) = \ln(1 + e^{x+t}) \ge \ln(e^{x+t}) = x + t$. Alors

$$F(x) = \int_0^1 f(x,t) \, \mathrm{d}t \ge \int_0^1 (x+t) \, \mathrm{d}t = x + \left[\frac{t^2}{2} \right]_0^1 = x + \frac{1}{2}.$$

Or, $\lim_{x \longrightarrow +\infty} (x + \frac{1}{2}) = +\infty$, donc $\lim_{x \longrightarrow +\infty} F(x) = +\infty$.

• Par ailleurs, on sait que $\forall x \ge 0$, $\ln(1+x) \le x$, et donc $\forall (x,t) \in \mathbb{R}^2$, $\ln(1+e^{x+t}) \le e^{x+t}$.

$$F(x) = \int_0^1 \ln(1 + e^{x+t}) \, \mathrm{d}t \le \int_0^1 e^{x+t} \, \mathrm{d}t = \left[e^{x+t} \right]_{t=0}^1 = e^{x+1} - e^x = e^x (e-1).$$

Or, $\lim_{x \to -\infty} e^x = 0$, donc $\lim_{x \to -\infty} e^x (e - 1) = 0$ et donc $\lim_{x \to -\infty} F(x) = 0$ (car $F(x) \ge 0$).

5. On a aussi

$$\forall (x,t) \in \mathbb{R}^2_+, e^{x+t} \geqslant e^0 = 1,$$

et donc $2e^{x+t} \ge 1 + e^{x+t}$. Alors :

$$\ln(2) + x + t = \ln(2) + \ln(e^{x+t}) = \ln(2e^{x+t}) \ge \ln(1 + e^{x+t}) = f(x, t),$$

donc

$$\ln(2) + x + \frac{1}{2} = \int_0^1 (\ln(2) + x + t) \, dt \ge \int_0^1 f(x, t) \, dt = F(x).$$

Ainsi, grâce à la question 4, on a

$$\forall x \ge 0, \ln(2) + x + \frac{1}{2} \ge F(x) \ge x + \frac{1}{2}.$$

Si x>0, $1+\frac{1}{x}(\ln(2)+\frac{1}{2})\geqslant\frac{F(x)}{x}\geqslant1+\frac{1}{2x}$. Or, $\lim_{x\longrightarrow+\infty}1+\frac{1}{x}(\ln2+\frac{1}{2})=1=\lim_{x\longrightarrow+\infty}(1+\frac{1}{2x})$. On en déduit que $\lim_{x\longrightarrow+\infty}\frac{F(x)}{x}=1$ et donc $F(x)\sim x$ lorsque $x\longrightarrow+\infty$.

Exercice 2:

1. Pour $\alpha \in \{2,3\}$, on a $\frac{1}{(x+t)^{\alpha}} \sim_{t \longrightarrow +\infty} \frac{1}{t^{\alpha}}$ (car pour t > 0, $\frac{1}{(x+t)^{\alpha}} = \frac{1}{t^{\alpha}(1+\frac{x}{t})^{\alpha}}$ où $\lim_{t \longrightarrow +\infty} (1+\frac{x}{t})^{\alpha} = 1$). Or, l'intégrale impropre $\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$ converge (puisque $\alpha > 1$) et $\frac{1}{(x+t)^{\alpha}} > 0$. Donc l'intégrale impropre $\int_{1}^{+\infty} \frac{\mathrm{d}t}{(t+x)^{\alpha}}$ converge, ainsi que $\int_{0}^{+\infty} \frac{\mathrm{d}t}{(t+x)^{\alpha}}$. D'où la conclusion voulue.

2.

$$\forall t > 0, \left| \frac{\sin t}{(x+t)^2} \right| \leqslant \frac{1}{(x+t)^2}.$$

Or, l'intégrale impropre $\int_0^{+\infty} \frac{dt}{(t+x)^2}$ converge. Donc l'intégrale impropre $\int_0^{+\infty} \frac{\sin t}{(t+x)^2} dt$ converge absolument, et a fortiori elle converge.

3. • Notons $f:]1, +\infty[\times[0, +\infty[\to \mathbb{R}, (x,t) \mapsto \frac{\sin t}{(x+t)^2}]]$. f est continue comme quotient de fonctions continues (la fonction $f_1: \mathbb{R}^2 \to \mathbb{R}, (x,t) \mapsto \sin t$ est continue par composition de la fonction $\sin: \mathbb{R} \to \mathbb{R}$ avec la projection canonique $\mathbb{R}^2 \to \mathbb{R}, (x,t) \mapsto t$, et la fonction $f_2: \mathbb{R}^2 \to \mathbb{R}, (x,t) \mapsto (x+t)^2$ est continue car elle est polynomiale. Enfin, par restriction, f_1 et f_2 restent continues sur $]1, +\infty[\times[0, +\infty[)]$.

- Pour chaque $t \ge 0$, la fonction $]1, +\infty[\to \mathbb{R}, x \mapsto \frac{\sin t}{(x+t)^2}]$ est dérivable car c'est une fraction rationnelle, et on a $\frac{\partial f}{\partial x}(x,t) = -\frac{2\sin t}{(x+t)^3}$.
- La fonction $\frac{\partial f}{\partial x}$: $]1, +\infty[\times[0, +\infty[\to \mathbb{R} \text{ est continue comme quotient de fonctions continues.}]$
- De plus, il existe $x \in]1, +\infty[$ tel que l'intégrale impropre $\int_0^{+\infty} f(x,t) dt$ converge (par la question 2).
- L'intégrale impropre $\int_0^{+\infty} \frac{\partial f}{\partial x}(\cdot,t) dt$ converge normalement sur]1, +\infty[car

$$\forall x > 1, \forall t \geqslant 0, \left| \frac{\partial f}{\partial x}(x, t) \right| = \left| \frac{-2\sin t}{(x + t)^3} \right| \leqslant \frac{2}{(x + t)^3} \leqslant \frac{2}{(1 + t)^3}$$

(car x > 1, donc x + t > 1 + t > 0 et donc $(x + t)^3 > (1 + t)^3$), où l'intégrale impropre $\int_0^{+\infty} \frac{2 \, \mathrm{d}t}{(1+t)^3}$ converge (d'après la question 1).

Finalement, par le théorème de dérivation sous le signe \int (le cas non compact), la fonction F est de classe C^1 sur $]1, +\infty[$ et on a :

$$\forall x > 1, F'(x) = \int_0^{+\infty} \frac{\partial f}{\partial x}(x, t) \, dt = \int_0^{+\infty} \frac{-2\sin t}{(x + t)^3} \, dt = -2 \int_0^{+\infty} \frac{\sin t}{(x + t)^3} \, dt$$

4. Soit R > 0. On a l'intégration par parties :

$$\int_0^R \sin t (-2(x+t)^{-3}) dt = \left[\sin t (x+t)^{-2} \right]_{t=0}^R - \int_0^R (x+t)^{-2} \cos t dt, \tag{1}$$

ou encore:

$$\int_0^R \frac{-2\sin t}{(x+t)^3} \, \mathrm{d}t = \left[\frac{\sin t}{(x+t)^2} \right]_{t=0}^R - \int_0^R \frac{\cos t}{(x+t)^2} \, \mathrm{d}t.$$

Or, $\lim_{R\longrightarrow +\infty}\frac{\sin R}{(x+R)^2}=0$ (car $\left|\frac{\sin R}{(x+R)^2}\right|\leqslant \frac{1}{(x+R)^2}\xrightarrow[R\to +\infty]{}$ 0), et les intégrales impropres $\int_0^{+\infty}\frac{-2\sin t}{(x+t)^3}\,\mathrm{d}t$ et $\int_0^{+\infty}\frac{\cos t}{(x+t)^2}\,\mathrm{d}t$ convergent (car $\left|\frac{\cos t}{(x+t)^2}\right|\leqslant \frac{1}{(x+t)^2}$ où l'intégrale impropre $\int_0^{+\infty}\frac{\mathrm{d}t}{(x+t)^2}$ converge). On en déduit que l'identité (1) passe à la limite lorsque $R\longrightarrow +\infty$ et que

$$F'(x) = \int_0^{+\infty} \frac{-2\sin t}{(x+t)^3} dt = -\int_0^{+\infty} \frac{\cos t}{(x+t)^2} dt.$$

5. Soit $g:]1, +\infty[\times[0, +\infty[\to \mathbb{R}, (x,t) \mapsto \frac{-\cos t}{(x+t)^2}]. g$ est continue comme quotient de fonctions continues. Pour tout $t \geq 0$, la fonction $]1, +\infty[\to \mathbb{R}, x \mapsto g(x,t)]$ est dérivable (c'est une fraction rationnelle) et $\frac{\partial g}{\partial x}(x,t) = \frac{2\cos t}{(x+t)^3}$. La fonction $\frac{\partial g}{\partial x}:]1, +\infty[\times[0, +\infty[\to \mathbb{R}]]$ est continue comme quotient de fonctions continues. De plus, il existe $x \in]1, +\infty[$ tel que l'intégrale impropre $\int_0^{+\infty} g(x,t) \, \mathrm{d}t$ converge (voir la question 4). Enfin, l'intégrale impropre $\int_0^{+\infty} \frac{\partial g}{\partial x}(\cdot,t) \, \mathrm{d}t$ converge normalement sur $]1, +\infty[$ car :

$$\forall x > 1, \forall t \geqslant 0, \left| \frac{\partial g}{\partial x}(x, t) \right| = \left| \frac{2 \cos t}{(x + t)^3} \right| \leqslant \frac{2}{(x + t)^3} \leqslant \frac{2}{(1 + t)^3},$$

où l'intégrale impropre $\int_0^{+\infty} \frac{2}{(1+t)^3} dt$ converge (voir la question 1).

On en déduit, par le théorème de dérivation sous le signe \int , que la fonction F': $]1, +\infty[\to \mathbb{R}]$ est de classe \mathcal{C}^1 et que

$$\forall x > 1, F''(x) = \int_0^{+\infty} \frac{\partial g}{\partial x}(x, t) \, \mathrm{d}t = \int_0^{+\infty} \frac{2 \cos t}{(x + t)^3} \, \mathrm{d}t = 2 \int_0^{+\infty} \frac{\cos t}{(x + t)^3} \, \mathrm{d}t$$

6. Il y avait une erreur dans l'énoncé, l'équation différentielle à montrer était

$$y'' + y - \frac{1}{x^2} = 0$$

Soit R > 0. On a l'intégration par parties :

$$\int_0^R \cos t(-2(x+t)^{-3}) dt = \left[\cos t(x+t)^{-2}\right]_{t=0}^R - \int_0^R (x+t)^{-2}(-\sin t) dt,$$
 (2)

ou encore :

$$\int_0^R \frac{-2\cos t}{(x+t)^3} \, \mathrm{d}t = \left[\frac{\cos t}{(x+t)^2} \right]_{t=0}^R + \int_0^R \frac{\sin t}{(x+t)^2} \, \mathrm{d}t.$$

Or, $\lim_{R \longrightarrow +\infty} \frac{\cos R}{(x+R)^2} = 0$ (car $\left| \frac{\cos R}{(x+R)^2} \right| \le \frac{1}{(x+R)^2} \xrightarrow[R \to +\infty]{} 0$), et les intégrales impropres $\int_0^{+\infty} \frac{\cos t}{(x+t)^3} \, \mathrm{d}t$ et $\int_0^{+\infty} \frac{\sin t}{(x+t)^2} \, \mathrm{d}t$ convergent (par les questions 2 et 4). On en déduit que l'identité (2) passe à la limite lorsque $R \longrightarrow +\infty$ et que

$$\forall x > 1, -F''(x) = -2 \int_0^{+\infty} \frac{\cos t}{(x+t)^3} dt = -\frac{1}{x^2} + \int_0^{+\infty} \frac{\sin t}{(x+t)^2} dt = -\frac{1}{x^2} + F(x),$$

et donc

$$\forall x > 1, F''(x) + F(x) - \frac{1}{x^2} = 0.$$

F est donc solution de l'équation différentielle proposée.

7. Fixons a>0. Comme à la question 3 et 5, on voit que f et $g\colon]a,+\infty[\times[0,+\infty[\to\mathbb{R} \text{ sont continues, que les fonctions }]a,+\infty[\to\mathbb{R}, x\mapsto f(x,t) \text{ et } g(x,t) \text{ sont dérivables pour tout }t\geqslant 0$, et que $\frac{\partial f}{\partial x}$ et $\frac{\partial g}{\partial x}\colon]a,+\infty[\times[0,+\infty[\to\mathbb{R} \text{ sont continues. De plus, il existe }x>a$ tel que les intégrales impropres $\int_0^{+\infty}f(x,t)\,\mathrm{d}t$ et $\int_0^{+\infty}g(x,t)\,\mathrm{d}t$ convergent (par les questions 2 et 4), et comme

$$\forall x > a, \forall t \ge 0, \left| \frac{\partial f}{\partial x}(x, t) \right| = \left| \frac{-2\sin t}{(x+t)^3} \right| \le \frac{2}{(x+t)^3} \le \frac{2}{(a+t)^3}$$
$$\left| \frac{\partial g}{\partial x}(x, t) \right| \le \frac{2}{(a+t)^3},$$

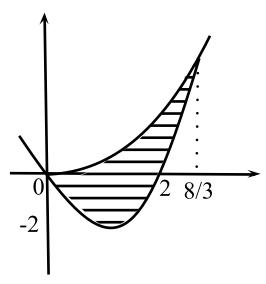
où l'intégrale impropre $\int_0^{+\infty} \frac{\mathrm{d}t}{(a+t)^3}$ converge (par la question 1). Il en résulte que les intégrales impropres $\int_0^{+\infty} \frac{\partial f}{\partial x}(\cdot,t) \, \mathrm{d}t$ et $\int_0^{+\infty} \frac{\partial g}{\partial x}(\cdot,t) \, \mathrm{d}t$ convergent normalement sur $]a,+\infty[$. De tout cela, on en déduit par le théorème de dérivation sous le signe \int (le cas non compact) que les fonctions F et $G:]a,+\infty[\to \mathbb{R}, \ x \mapsto \int_0^{+\infty} f(x,t) \, \mathrm{d}t$ et $\int_0^{+\infty} g(x,t) \, \mathrm{d}t$ sont de classe \mathcal{C}^1 sur $]a,+\infty[$ et que

$$\forall x \in]a, +\infty[, F'(x)] = \int_0^{+\infty} \frac{\partial f}{\partial x}(x, t) dt = \int_0^{+\infty} g(x, t) dt = G(x)$$

où la deuxième égalité se montre comme à la question 4. Ceci étant vrai pour tout a > 0, F et G sont de classe C^1 sur $]0, +\infty[$ et on a F' = G, ce qui prouve que F est de classe C^2 sur $]0, +\infty[$.

Exercice 3:

1. (a) Dessin de P



(b) Soit $(x, y) \in \mathbb{R}^2$. Alors:

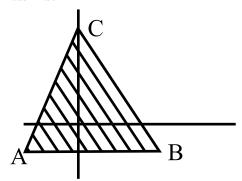
$$(x,y) \in P \iff 2x^2 - 4x \leqslant y \leqslant \frac{x^2}{2} \implies 2x^2 - 4x \leqslant \frac{x^2}{2} \implies 4x^2 - 8x \leqslant x^2$$
$$\implies 3x^2 - 8x \leqslant 0 \implies x(3x - 8) \leqslant 0 \implies 0 \leqslant x \leqslant \frac{8}{3}.$$

Ainsi, $P = \{(x,y) \in \mathbb{R}^2, 0 \leqslant x \leqslant \frac{8}{3}, 2x^2 - 4x \leqslant y \leqslant \frac{x^2}{2}\}$. Il en résulte que P est quarrable, car les fonctions $[0,\frac{8}{3}] \to \mathbb{R}, x \mapsto 2x^2 - 4x$ et $\frac{x^2}{2}$ sont continues (elles sont polynomiales) et que :

$$\mu(P) = \iint\limits_{P} dx \, dy = \int_{0}^{8/3} \left(\int_{2x^{2} - 4x}^{x^{2}/2} dy \right) dx = \int_{0}^{8/3} \left(\frac{x^{2}}{2} - (2x^{2} - 4x) \right) dx$$
$$= \int_{0}^{8/3} \left(-\frac{3x^{2}}{2} + 4x \right) dx = \left[\frac{x^{3}}{2} + 2x^{2} \right]_{x=0}^{8/3} = \left[\frac{x^{2}}{2} (4 - x) \right]_{x=0}^{8/3} = \frac{8^{2}}{2 \times 3^{2}} (4 - \frac{8}{3}) = \frac{128}{27}$$

5

2. Dessin de T



La droite passant par A et B, celle passant par B et C et celle passant par A et C ont respectivement pour équations : y = 3x + 2, $y = -\frac{3}{2}x + 2$ et y = -1. On en déduit que

$$T = \left\{ (x, y) \in \mathbb{R}^2, \quad y \leqslant 3x + 2, \quad y \leqslant -\frac{3}{2}x + 2, \quad y \geqslant -1 \right\}.$$

- (a) Si $(x,y) \in T$, alors $3x + y + 6 = (3x + 2) + (y + 4) \ge y + (y + 4) = 2y + 4 \ge -2 + 4 = 2 > 0$. Donc $3x + y + 6 \ne 0$. On en déduit que la fonction $(x,y) \mapsto \frac{1}{(3x + y + 6)^2}$ est bien définie sur T.
- (b) On peut encore écrire :

$$T = \left\{ (x,y) \in \mathbb{R}^2, \quad -1 \leqslant y \leqslant 2, \quad -\frac{1}{3}(2-y) \leqslant x \leqslant \frac{2}{3}(2-y) \right\}.$$

(car si $(x,y) \in T$, alors $y \le 3x+2$ donc $x \ge \frac{1}{3}(y-2)$, mais aussi $y \le -\frac{3}{2}x+2$ donc $\frac{2}{3}(2-y) \ge x$ et donc $\frac{2}{3}(2-y) \ge x \ge \frac{1}{3}(y-2) \Longrightarrow \frac{2}{3}(2-y) \ge \frac{1}{3}(y-2) \Longrightarrow 2 \ge y$. La réciproque est immédiate). On en déduit que T est quarrable et que

$$I = \iint_{T} \frac{\mathrm{d}x \,\mathrm{d}y}{(3x+y+6)^2} = \int_{-1}^{2} \left(\int_{-\frac{1}{3}(2-y)}^{\frac{2}{3}(2-y)} \frac{\mathrm{d}x}{(3x+y+6)^2} \right) \,\mathrm{d}y$$

Or

$$\int_{-\frac{1}{3}(2-y)}^{\frac{2}{3}(2-y)} \frac{\mathrm{d}x}{(3x+y+6)^2} = \frac{1}{3} \left[\frac{-1}{3x+y+6} \right]_{x=-\frac{1}{3}(2-y)}^{\frac{2}{3}(2-y)}$$
$$= -\frac{1}{3} \left(\frac{1}{10-y} - \frac{1}{2y+4} \right) = \frac{1}{3} \left(\frac{1}{2(y+2)} + \frac{1}{y-10} \right).$$

Donc

$$3I = \int_{-1}^{2} \left(\frac{1}{2(y+2)} + \frac{1}{y-10} \right) dy = \left[\frac{1}{2} \ln(y+2) + \ln|y-10| \right]_{-1}^{2}$$
$$= (\ln 2 + 3 \ln 2) - (\frac{1}{2} \ln 1 + \ln 11) = 4 \ln 2 - \ln 11 = \ln \frac{16}{11}$$

Ainsi, $I = \frac{1}{3} \ln \frac{16}{11}$.